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Abstract

In this paper, we present a new linear system solver for use in a fully-implicit ocean model. The new solver allows to
perform bifurcation analysis of relatively high-resolution primitive-equation ocean-climate models. It is based on a block-
ILU approach and takes special advantage of the mathematical structure of the governing equations. In implicit models
Jacobian matrices have to be constructed. Analytical construction is hard for complicated but more realistic representa-
tions of mixing. This is overcome by evaluating the Jacobian in part numerically. The performance of the new implicit
ocean model is demonstrated using (i) a high-resolution model of the wind-forced double-gyre flow problem in a (relatively
small) midlatitude spherical basin, and (ii) a medium-resolution model of thermohaline and wind-driven flows in an
Atlantic size single-hemispheric basin.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

Models of the large-scale ocean circulation form interesting dynamical systems showing transition behavior
on many spatial and temporal scales when parameters are varied [8]. A well known large-scale transition is the
collapse of the North Atlantic meridional overturning circulation, which occurs when the freshwater flux
amplitude increases in the northern part of the basin [3]. Another, less known transition, is that between dif-
ferent separation patterns of western boundary currents, such as those of the Kuroshio and Gulf Stream
[18,29]. Dynamical systems theory has also been used to investigate the physics of low-frequency climate var-
iability. In several examples, such as the multidecadal variability in the North Atlantic [35] and the El Niño
variability in the equatorial Pacific [25], the origin of the variability could be traced to the occurrence of a
Hopf bifurcation.
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For the North Atlantic ocean circulation, focus of dynamical systems studies has been to determine the
bifurcation behavior of two limiting cases of the ‘real’ system: (i) the pure wind-driven circulation and (ii)
the pure thermohaline circulation. In the first type of studies, the thermodynamic degrees of freedom are lim-
ited (e.g. in isothermal situations) and focus is on the transition behavior of solutions of the momentum equa-
tions. In the second type of studies, focus has been on the transition behavior of the solutions of the
temperature and salinity equations under coupling to (approximately) linear momentum equations. The
numerical techniques used are pseudo-arclength continuation (see Section 2.3 below) in which steady states
are determined versus parameters with a Newton–Raphson iterative method [19].

For the pure wind-driven ocean circulation, so far only relatively simple models, such as single- or multi-
layer quasi-geostrophic models and shallow-water models, have been used [34,9,23,31,32,24]. The main limi-
tation in the degree of complexity of these models is the necessary horizontal resolution needed (about 10 km)
to adequately capture the bifurcations and the transitions between the different flow regimes. One of the sys-
tems studied in detail is the double-gyre flow in a rectangular basin. When the lateral friction is decreased for
this flow, it undergoes several local bifurcations before a homoclinic (either Shilnikov or Lorenz type) bifur-
cation occurs [20,22,33]. For smaller values of the lateral friction, eventually a so-called coherent vortex
regime is found, with vortices of about 10 km diameter dominating the flow [30].

For pure thermally (or thermohaline) driven flows, several studies have analyzed the instabilities of single-
hemispheric flows [4,16,17,35]. The density driven flow may undergo a Hopf bifurcation when the lateral (ther-
mal) diffusion decreases, leading to either multidecadal or centennial variability. The patterns and time scales
of these instabilities are already resolved at a horizontal resolution of about 4�, they can eventually be con-
nected to those of the Atlantic Multidecadal Oscillation [11] and have therefore lead to a mechanistic view
of this oscillation. Also the double-hemispheric thermohaline-driven case has been much studied with the
strength of the freshwater flux forcing as a control parameter. In the equatorially symmetric case, a pitchfork
bifurcation leads to pole-to-pole solutions for the meridional overturning circulation (MOC) and possibilities
of transitions between different equilibria [3]. These transitions can eventually be connected to hysteresis
behavior of the global ocean circulation as seen in many low-resolution climate models [8].

Several numerical problems have limited the applicability of numerical bifurcation techniques to more
sophisticated primitive-equation ocean models:

(i) The inclusion of more realistic representations of mixing processes for heat and salt (than simple con-
stant) of spatially dependent (prescribed) eddy coefficients was difficult because of the analytic evaluation
of the Jacobian matrix. State-of-the-art ocean-climate models certainly incorporate mixing along density
surfaces and a representation of the effects of the meso-scale eddies [12].

(ii) The representation of convective overturning (so-called ‘convective adjustment’) needed to obtain stably
stratified solutions has given trouble due to convergence problems in the linear system solvers. Here, the
vertical mixing depends in an approximately discontinuous way on the vertical density gradient. In Dijk-
stra et al. [10], we presented the Global Adjustment Procedure (GAP) as an ad-hoc method to obtain
stably stratified solutions from unstably stratified ones. The GAP cannot be combined, however, with
a pseudo-arclength continuation procedure and is computationally expensive.

(iii) It was difficult to carry out numerical bifurcation analysis for ocean-climate models with more than 105

degrees of freedom because of the slow convergence of the iterative solvers of the linear systems (which
arise from the Newton–Raphson approach to find steady states). In Weijer et al. [38], we used the Matrix
Renumbering Incomplete LU factorization (MRILU [2]) as a preconditioner combined with the Gener-
alized Mimimal Residual method (GMRES [28]) to accomplish this. This solver is a general sparse
matrix solver and hence no specific properties of the physical problem at hand are exploited.

Implicit models are useful to understand the origin of low-frequency variability in the combined wind- and
buoyancy-driven ocean circulation. In these situations, the MOC has to be computed while narrow western
boundary currents have to be resolved. For these advectively dominated flows, a more realistic representation
of mixing is needed, convective adjustment is essential and the MRILU preconditioner is inadequate. In these
cases, MRILU needs too much time to construct the incomplete factorization simply because it generates too
much fill. This fill in the factorization also causes a relatively expensive solution process.
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Recently, Nadiga et al. [21] suggested an approach for implicit integration of the POP model using Jaco-
bian-free Newton–Krylov methods. They were able to take much larger time steps than in the explicit version
of the POP model, but so far no bifurcation diagrams were computed. In this paper, we describe methodology
to tackle all the problems (i–iii) mentioned above by a partial numerical evaluation of the Jacobian matrix and
by the development of a tailored linear system solver. The efficient numerical approximation of the Jacobian
matrix solves the problems (i) and (ii) above. The solver to tackle problem (iii) above consists of a new
block-ILU preconditioner combined with flexible GMRES. This preconditioner exploits the structure of
the equations. The block approach leads to a very efficient method, which allows bifurcation analysis of
state-of-the-art ocean-climate models with up to a million degrees of freedom.

In Section 2, we present the formulation of the ocean model. The new solver is presented in detail in Section
3 and its numerical properties are demonstrated in Section 4 through two example flows. A short summary
and discussion of the results is provided in Section 5.

2. Ocean flows in a single-hemispheric basin

In this section, we describe the ocean model configuration used (Section 2.1), the formulation of the mixing
of heat and salt (Section 2.2) and details on the numerical implementation (Section 2.3).

2.1. Model formulation

We consider flows in a spherical sector bounded by longitudes /w and /e and by latitudes hs and hn. The
ocean basin has a constant depth D and is bounded vertically by z = �D and a nondeformable ocean-atmo-
sphere boundary z = 0. The flows in this domain are forced by a heat flux QH (in W m�2), a zonal wind stress
field (s/,sh) (in Pa) and a virtual salt flux QS (in m s�1).

The heat flux QH is proportional to the temperature difference between the sea-surface temperature T and a
prescribed atmospheric temperature TS, i.e.
QH ¼ �kTðT � T SÞ ð1Þ
where k (in W m�2 K�1) is a constant exchange coefficient. The virtual salt flux QS is similarly formulated as a
restoring condition and is given by
QS ¼ �kSðS � SSÞ ð2Þ
where kS (in m s�1) is an exchange coefficient. Both wind and buoyancy forcing are distributed as a body forc-
ing over the first (upper) layer of the ocean having a depth Hm.

Temperature and salinity differences in the ocean cause density differences according to
q ¼ q0ð1� aTðT � T 0Þ þ aSðS � S0ÞÞ ð3Þ
where aT and aS are the volumetric expansion coefficients and T0, S0 and q0 are reference quantities. We use
the Boussinesq and hydrostatic approximations. With r0 and X being the radius and angular velocity of the
Earth, the governing equations for the zonal, meridional and vertical velocity u, v and w and the dynamic pres-
sure p (the hydrostatic part has been subtracted) become
Du
dt
� uv tan h� 2Xv sin hþ 1

q0r0 cos h
op
o/
¼ AV

o
2u

oz2
þ AHLuðu; vÞ þ

s0

q0H m
s/GðzÞ ð4aÞ

Dv
dt
þ u2 tan hþ 2Xu sin hþ 1

q0r0

op
oh
¼ AV

o
2v

oz2
þ AHLvðu; vÞ þ

s0

q0H m
shGðzÞ ð4bÞ

op
oz
¼ q0gðaTT � aSSÞ ð4cÞ

ow
oz
þ 1

r0 cos h
ou
o/
þ oðv cos hÞ

oh

� �
¼ 0 ð4dÞ



Table
Values

2X = 1
Cp = 4
aT = 1
q0 = 1
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DT
dt
þ RTðT ; SÞ ¼

ðT S � T Þ
sT

GðzÞ ð4eÞ

DS
dt
þ RSðT ; SÞ ¼

ðSS � SÞ
sS

GðzÞ ð4fÞ
where GðzÞ ¼ Hðz=Hm þ 1Þ and H is a continuous approximation of the Heaviside function. Furthermore, Cp

is the constant heat capacity and sT = q0CpHm/kT and sS = Hm/kS are the surface adjustment time scales of
heat and salt, respectively. In addition,
D
dt
¼ o

ot
þ u

r0 cos h
o

o/
þ v

r0

o

oh
þ w

o

oz

Luðu; vÞ ¼ r2
Huþ u

r2
0 cos2 h

� 2 sin h
r2

0 cos2 h
ov
o/

Lvðu; vÞ ¼ r2
Hvþ v

r2
0 cos2 h

þ 2 sin h
r2

0 cos2 h
ou
o/

r2
H ¼

1

r2
0 cos h

o

o/
1

cos h
o

o/

� �
þ o

oh
cos h

o
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� �� �

In Eqs. (4a) and (4b) AH and AV are the horizontal and vertical momentum (eddy) viscosity which we will take
constant. The terms RT and RS in (4e) and (4f) represent the mixing of heat and salt and will be discussed in
the next subsection.

Slip conditions are assumed at the bottom boundary, while at all lateral boundaries no-slip conditions are
applied.At all lateral boundaries and the bottom boundary, the heat flux is zero.As the forcing is represented
as a body force over the first layer, slip and no-flux conditions apply at the ocean surface. Hence, the boundary
conditions are
z ¼ �D; 0 :
ou
oz
¼ ov

oz
¼ w ¼ oT

oz
¼ oS

oz
¼ 0 ð5aÞ

/ ¼ /w;/e : u ¼ v ¼ w ¼ oT
o/
¼ oS

o/
¼ 0 ð5bÞ

h ¼ hs; hn : u ¼ v ¼ w ¼ oT
oh
¼ oS

oh
¼ 0 ð5cÞ
Parameters that are fixed in the calculations described in Section 4 are the same as in typical large-scale low-
resolution ocean general circulation models and their values are listed in Table 1. Other parameter values will
be specified in Section 4.

2.2. Tracer mixing representation

To avoid spurious diapycnal mixing in the model of the previous section, so-called neutral physics fluxes
have to be specified. Background and details of these fluxes and of the so-called small slope approximation
used can be found in Griffies [13]. Expressions are summarized in Section 14.3 of Griffies [13] and in our nota-
tion these become
1
of fixed parameters used in the numerical calculations in Section 4

.4 · 10�4 [s�1] r0 = 6.4 · 106 [m]
.2 · 103 [J (kg K)�1] sT = sS = 7.5 · 101 [days]
.0 · 10�4 [K�1] aS = 7.6 · 10�4 [–]
.0 · 103 [kg m�3] AV = 1.0 · 10�3 [m2 s�1]
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RTðT ; SÞ ¼ rH � KHrHT þ gMðKH � gGjÞS � oT
oz

� �
þ o

oz
gMðKH þ gGjÞS � rHT þ gMKHS � S oT

oz

� �� �
þ o

oz
KV

oT
oz

� �
ð6aÞ

RSðT ; SÞ ¼ rH � KHrHS þ gMðKH � gGjÞS � oS
oz

� �
þ o

oz
gMðKH þ gGjÞS � rHS þ gMKHS � S oS

oz

� �� �
þ o

oz
KVV

oS
oz

� �
ð6bÞ
where KH is the neutral diffusivity and j is the [12] skew diffusive mixing coefficient. In addition, the neutral
slope vector S is given by
S ¼ �aTrHT þ aSrHS
�aT

oT
oz þ aS

oS
oz

ð7Þ
Note that we have introduced two homotopy parameters gM and gG to be able to continue smoothly between
constant horizontal diffusivity (gM = 0) and neutral mixing (gM = 1) and from no meso-scale eddy represen-
tation (gG = 0) to the [12] representation (gG = 1); the latter is referred below as GM-mixing.

We can only apply the representation above when the stratification is stable and when the slope of the iso-
pycnals is small. To limit the slopes, we apply a similar procedure as in Danabasoglu and McWilliams [6] by
defining am as a maximum permissible slope angle and then multiplying gM by the function f ðoq

ozÞ, where
f ðxÞ ¼ 3
xþ n

d

� �2

� 2
xþ n

d

� �3

; �n 6 x 6 �nþ d ð8aÞ

f ðxÞ ¼ 1; �nþ d 6 x 6 �d ð8bÞ

f ðxÞ ¼ 1� 3
xþ d

d

� �2

þ 2
xþ d

d

� �3

; �d 6 x 6 0 ð8cÞ

f ðxÞ ¼ 0; x 6 �n or x > 0 ð8dÞ

where
n ¼ jrHqj
tan am

ð9Þ
and d = 0.05n. In this way, the mixing coefficients are smoothly tapered to zero in regions where the slope be-
comes too large or where the stratification is unstable. In the results below, we will use different am to inves-
tigate the sensitivity to this parameter.

The coefficient KV in (6b) is the vertical mixing coefficient. Whereas in many ocean-climate models, usually
KV is taken constant (or spatially prescribed), too high values (in the order of 10�4 m2 s�1) were needed to
obtain a realistic strength of the meridional overturning. Mixing in a stratified ocean, however, requires a
transfer from kinetic to potential energy. The available energy for mixing, say e, is a topic of current research
[39] and it is supplied by the wind, the tides and buoyancy forcing. An overview of the processes responsible
for the spatial pattern of e is, for example, given in Huang [15]. According to a production–dissipation equi-
librium of the turbulent kinetic energy [36], the vertical mixing coefficient is defined as
KV ¼ K0
V þ

Ce

N 2
b

; N 2
b ¼ �

g
q0

oq
oz

ð10Þ
where C = 0.2 is the mixing efficiency and Nb is the buoyancy frequency. A background value K0
V can be attrib-

uted to internal wave breaking and it is taken to be constant.
In case of an unstable stratification, N 2

b < 0, additional mixing occurs through convective overturning. We
can take this mixing into account through an additional mixing coefficient Kc

V � K0
V by formulating KV as
KV ¼ K0
V þ F N 2

b

� �
Kc

V þ gVF �N 2
b

� � Ce

N 2
b

ð11Þ
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where gV is another homotopy parameter which can be used to study the situations with only constant mixing
coefficient (gV = 0) and variable mixing (gV = 1). Furthermore, F is a mixing profile function which we take as
FðxÞ ¼ maxftanhð�x3Þ; 0g ð12Þ

such that additional convective mixing is generated smoothly as soon as N 2

b < 0.

2.3. Numerical implementation

The equations are discretized in space using a second-order accurate control volume discretization method
on a staggered Arakawa B-grid in the horizontal with i = 1, . . .,N, j = 1, . . .,M, and a C-grid in the vertical
k = 1, . . .,L; this combination is called a Lorenz grid (see Fig. 1). The spatially discretized model equations
can be written in the form
M
du

dt
¼ FðuÞ ¼ LðuÞ þNðu; uÞ ð13Þ
where the vector u contains the unknowns (u,v,w,p,T,S) at each grid point and hence has dimension
d = 6 · N · M · L. The operators M and L are linear and N represents the nonlinear terms in the equations.

Steady state solutions lead to a set of nonlinear algebraic equations of the form
Fðu; pÞ ¼ 0 ð14Þ

Here the parameter dependence of the equations is made explicit through the p-dimensional vector of param-
eters p and hence F is a nonlinear mapping from Rd+p! Rd. To determine branches of steady solutions of Eq.
(14) as one of the parameters, say l, is varied, the pseudo-arclength method [19] is used. The branches
(u(s),l(s)) are parameterized by an ‘arclength’ parameter s. An additional equation is obtained by ‘normaliz-
ing’ the tangent
_uT
0 ðu� u0Þ þ _l0ðl� l0Þ � Ds ¼ 0 ð15Þ
where (u0,l0) is an analytically known starting solution or a previously computed point on a particular branch
and Ds is the step-length. Euler–Newton continuation is used to solve the system of Eqs. (14) and (15). The
(d + 1) · (d + 1) Jacobian matrix J ðsÞ of (14) and (15) along a branch is given by
J ðsÞ ¼
U Fl

_uT
0 _l0

� �
ð16Þ
where U is the matrix of derivatives of F to u and Fl the derivative to the parameter l.
Fig. 1. Grid cell showing positioning of the variables.
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In previous formulations of this ocean model [38], the entries in the Jacobian matrix were computed ana-
lytically and directly from the discretized equations. As the mixing formulations (6b) and (11) are quite
complicated, it turned out to be advantageous to use an additional numerical evaluation of the Jacobian
matrix. In Coleman et al. [5], the problem of how to estimate the Jacobian matrix J of a general mapping
F: Rn! Rm using the least number of function evaluations is discussed. The jth column of J is approxi-
mated by
Jj ¼
Fð. . . ; xj þ �; . . .Þ � Fð. . . ; xj; . . .Þ

�
ð17Þ
for small �. In the results in Section 4, we tested values of � = 10�7 � 10�5 and found that the results were not
sensitive over this range; a value of � = 10�6 was chosen. In general, we need to calculate m of such differences
to approximate the Jacobian. For sparse Jacobian matrices, a group of columns can be determined such that
no two columns in this group have a nonzero element in the same row position. This is because, for large-scale
problems, the elements of F are dependent on a limited number of variables xj. Let C be such a group of col-
umns and let d 2 Rm be a vector with dj = � if Jj 2 C and dj = 0 otherwise. Then the difference
JC ¼
Fðxþ dÞ � FðxÞ

�
ð18Þ
contains the non-zero elements of the columns belonging to C. By partitioning the columns of the Jacobian
matrix in this way, we can more efficiently evaluate the Jacobian since the number of differences we need
to calculate are strongly reduced. For the implementation of this approach, we used subroutines provided
by Coleman et al. [5]. These subroutines consists of (i) routines that determine the groups C, such that the
number of groups is minimal; and (ii) routines that determine for a given group C the vector d and extract
the columns Jj from JC. These routines require the sparsity pattern of the Jacobian matrix, i.e. the variables
on which F depends, and a routine that evaluates F(x).

During one Newton iteration, linear systems of the form
J
Du

Dl

� �
¼

r

rdþ1

� �
ð19Þ
have to be solved where Du and Dl are updates during the Newton process and r and rd+1 derive from the left-
hand sides of (14) and (15), respectively. For these linear systems of equations the special solver, as presented
in the next section, is required.

3. The tailored solver

In each step of the Newton process we have to solve one or two linear systems of equations with the
matrix U in (16), which is by far the most expensive part of the computation. The size of each linear system
is such that direct solvers are not applicable and we have to use iterative methods. Because the matrix is
non-symmetric and has indefinite parts, so it has a high condition number, any Krylov subspace method
directly applied to the equations will at best converge very slowly, so we have to accelerate the method with
a preconditioner. In Weijer et al. [38] we used matrix renumbering incomplete LU (MRILU [2]), a black
box preconditioner that is comparable to algebraic multigrid. MRILU is able to build an efficient precon-
ditioner, but the construction takes too much CPU time and it requires much memory because a high
amount of fill is needed for an accurate factorization, i.e. a factorization that keeps the number of iterations
in the solution process low.

In order to get a better preconditioner, one that is cheaper to construct and requires less memory, we have
to look more closely to the discrete ocean model equations and exploit their structure.

3.1. The structure of the equations

The equation Uu = b has the following structure
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Auv Euv Guv 0

0 0 Gw BST

Duv Dw 0 0

Buv Bw 0 AST

26664
37775

uuv

uw

up

uST

26664
37775 ¼

buv

bw

bp

bST

26664
37775 ð20Þ
The four rows in (20) are associated to the equations for conservation of momentum in longitudinal and lat-
itudinal direction (Eqs. (4a) and (4b)), hydrostatic equilibrium (Eq. (4c)), conservation of mass (Eq. (4d)) and
conservation of heat and salt (Eqs. (4e) and (4f)), respectively.

Each G* represents the discrete gradient operator and each D* the discrete divergence operator. Here, Gw

is the transpose of Dw, but, due to the spherical coordinate system, Guv is not the transpose of Duv, which is
often the case in the plane and important for numerical stability. However, here the equivalent property
holds that there exist diagonal matrices K1 and K2 such that GT

uv ¼ K1DuvK2 The matrices AST and Auv

are of convection–diffusion type, and Auv includes the Coriolis terms. The matrices B* represent the cou-
plings between the dynamic and thermodynamic variables. The matrix Euv represents the coupling to w

in the material derivative in Eqs. (4a) and (4b). As these terms are small with respect to Coriolis terms
we will ignore the block in the design of the preconditioner. It is treated as another zero block which sim-
plifies the calculations. As one can see, next to Euv there are six zero blocks, which means that severable
variables are not coupled. All the submatrices are structured and sparse and there are only OðdÞ nonzeros
in each matrix.

These zero blocks are currently not exploited enough in MRILU and therefore too much fill is generated.
We will try to overcome this shortcoming of MRILU and exploit the empty blocks in the design of a new pre-
conditioner. We will use clustering for u, v, because the Eqs. (4a) and (4b) have the same structure. As the same
holds for (4e) and (4f), also the variables T, S are clustered.

At the start of the section we mentioned that there are d = 6 · N · M · L unknowns. However, due to the
staggered grid and the boundary treatment some of the unknowns are not part of the computational domain.
These unknowns are already excluded from the system (20). Immediate consequence is that the dimensions of
the vectors u* in (20) are not the same. Let d* be the dimension of each u*, then it holds that
duv = dST = 2 · N · M · L and dw < dp 6 N · M · L. The inequality dw < dp holds because we have a stag-
gered grid in the vertical direction. Per water column, there is one internal pressure node more than there
are vertical velocity nodes.

3.2. Rewriting the equations to ease the solution process

Before we describe the preconditioner for (20) we first rewrite the system in three subsequent steps: (i) we
split the pressure in a depth-averaged pressure and a component perpendicular to that, (ii) transform the con-
tinuity equation and (iii) rearrange columns and rows. The aim of all these operations is to get a system that is
a better starting point for the development of a preconditioner.

3.2.1. Step 1: depth-average the pressure

In the continuous formulation the hydrostatic pressure equation, see Eq. (4c), contains the term pz. Note
that we can decompose the pressure in p ¼ �p þ ~p, where �pð/; hÞ ¼

R 0

�h pð/; h; zÞdz is a depth-averaged pressure.
The averaged pressure vanishes in the hydrostatic pressure equation, because it is in the kernel of the operator
o
oz. From this it follows that

R 0

�h ~pð/; h; zÞdz ¼ 0. The consequence of this decomposition is that the problem
~f z ¼ g in the space of all functions with

R 0

�h f dz ¼ 0, is now uniquely solvable.
We can do something similar on the discrete equations. As we pointed out in Section 3.1 the matrix Gw

has dimensions dw · dp and because dw < dp it is not square. The matrix has full rank, so the kernel has
dimension dp � dw. Because of the structured grid and the fact that Gw is a discrete gradient operator,
it is quite easy to construct an orthonormal basis for this kernel. Given such a basis we can build the oper-
ator Mp, who’s columns are precisely these orthonormal basis vectors. Consequently GwMp = 0 and
MT

p Mp ¼ Ip. The operator MT
p acts on the pressure space and is up to a factor a depth-averaging of the

pressure field.
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Let �up¼: MT
p up be the depth-averaged pressure. Furthermore, we define ûp¼: up �Mp�up ¼ Ip �MpMT

p

� 	
up, a

vector that lives in the same space as up but that satisfies the extra condition MT
p ûp ¼ 0. We can decompose the

pressure in the following way
up ¼ ûp þMp�up
Next, up is substituted into Eq. (20) and the equation that restricts ûp in the pressure space MT
p ûp ¼ 0

� 	
is

added to the system. In this way the number of both unknowns and equations is increased with the same
amount.

The advantage of the splitting of the pressure space is that in the discrete hydrostatic pressure equation we
have a term Gw up that now becomes Gwûp þGwMp�up ¼ Gwûp and the system Gwûp ¼ b is now uniquely solv-
able for any right-hand side b.

3.2.2. Step 2: transform the continuity equation

Since wz = f with w(0) = w(�h) = 0 is overdetermined, there is no solution if not
R 0

�h f dz ¼ 0. In our case,
the latter is obtained from the depth-integration of the continuity equation, see Eq. (4d), where w drops out.
This gives an equation for the horizontal velocities. With the horizontal velocities satisfying this equation, one
can solve w uniquely and leave out even one of the boundary conditions or even more rigorously, cut the z-
interval in two parts and let the upper part be determined by the boundary condition at the surface and the
lower part by that at the bottom.

We can perform this depth-integration as well on the discrete equations. In analogy to Step 1, we use the
operator Mp, who’s rows form an orthonormal basis for the kernel of Gw ¼ DT

w. So each row of MT
p is a left-

singular vector of Dw. Consequently MT
p Dw ¼ 0 and MT

p Mp ¼ Ip. With MT
p we define the following transfor-

mation matrix
T ¼
Iw 0

MT
p

" #
ð21Þ
With this matrix an ordering of up is associated such that by the identity part in every vertical column in the
grid all but one elements of up are picked. Then the matrix T is square and invertible. Moreover the rows of Dw

picked by the same identity part will constitute an invertible matrix, this is the discrete counterpart of the con-
tinuous case discussed above.

Therefore, we define
eDuv ¼ ½ Iw 0 �Duv; Aw ¼ ½ Iw 0 �Dw and ~bp ¼ ½ Iw 0 �bp ð22Þ
and hence Aw is the ‘‘square part’’ of Dw which contains only the first dw rows of Dw. The matrices eDuv and ~bp

are the corresponding parts of Duv and bp, respectively. As the transformation matrix T is invertible, we can
apply it to the continuity equation: TDuvuuv + TDwuw = Tbp, which becomes
eDuv

MT
p Duv

" #
uuv þ

Aw

MT
p Dw

" #
uw ¼

~bp

MT
p bp

" #

Now the matrix product MT

p Dw is the depth averaging of the discrete vertical divergence operator. It is similar
to (GwMp)T, which was equal to 0; the same holds here and hence MT

p Dw ¼ 0. The transformation gives an
extra zero block.

So by Steps 1 and 2 we arrive at the following system
Auv 0 Guv GuvMp 0

0 0 Gw 0 BSTeDuv Aw 0 0 0

MT
p Duv 0 0 0 0

0 0 MT
p 0 0

Buv Bw 0 0 AST

26666666664

37777777775

uuv

uw

ûp

�up

uST

26666664

37777775 ¼
buv

bw

~bp

MT
p bp

0

bST

2666666664

3777777775
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3.2.3. Step 3: rearrange columns and rows

As a subsequent step, we perform a non-symmetric rearrangement of columns (variables) and rows (equa-
tions) in order to bring the matrix to a lower block-triangular matrix as much as possible. A lower block-tri-
angular matrix shows a way to solve the system in subsequent steps with smaller systems. Numbering the rows
from 1 to 6 and columns from 1 to 5, we use for the rows the permutation (2,5,1,4,3,6) and for the columns
(3,1,4,2,5). This rearrangement gives
Gw 0 0 0 BST

MT
p 0 0 0 0

Guv Auv GuvMp 0 0

0 MT
p Duv 0 0 0

0 ~Duv 0 Aw 0

0 Buv 0 Bw AST

26666666664

37777777775

ûp

uuv

�up

uw

uST

26666664

37777775 ¼
bw

0

buv

MT
p bp

~bp

bST

26666666664

37777777775

In the first two rows, we now have in the first column the matrices Gw and MT

p . Because of the special relation
between these two matrices (remember that GwMp = 0) they form together a square and invertible matrix. To
make this structure more explicit we define
Ap ¼
Gw

MT
p

" #
; eBST ¼

BST

0

� �
and ~bw ¼

bw

0

� �

With the introduction of these matrices the matrix system above becomes
Ap 0 0 0 eBST

Guv Auv GuvMp 0 0

0 MT
p Duv 0 0 0

0 eDuv 0 Aw 0

0 Buv 0 Bw AST

266666664

377777775

ûp

uuv

�up

uw

uST

26666664

37777775 ¼
~bw

buv

MT
p bp

~bp

bST

26666664

37777775 ð23Þ
We will call the matrix in this equation ~U. Observe that apart from eBST it is of block lower triangular form.
Note that so far we did not essentially change the equation; Eqs. (20) and (23) have the same solution

(knowing that up ¼ ûp þMp�up), although they look quite different. There are two advantages of the new form.
The first is that in a block LU factorization of the matrix, apart from the last diagonal block, the L matrix is
equal to the block lower triangular part of eU. The second advantage of (23) is that the amount of zeros on the
diagonal has reduced dramatically. The matrix in (23) has only one zero block where the one in (20) has two.
Furthermore, the zero block in the rewritten system is rather small because it is part of the depth-averaged
continuity equation. Hence, the rewritten system is a more convenient starting point for the development
of a preconditioner than (20).

3.3. The preconditioner and its implementation

If we drop the block eBST in system (23), the matrix becomes lower block-triangular. This would be a natural
choice for a preconditioner. It is easy to solve a system with that preconditioner: we only have to solve systems
with the diagonal blocks consecutively. Unfortunately the performance of this preconditioner deteriorates
when the coupling between dynamical en thermodynamical variables becomes stronger. In that case the blockeBST becomes important. This is certainly the case in the flows of interest. Hence, we have to use a more sophis-
ticated preconditioner.

First of all one should note that the second and third row of (23) contain the saddle point matrix
K ¼
Auv GuvMp

MT
p Duv 0

" #
ð24Þ
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An LU factorization of K is given by bK bU, where
bK ¼ Auv 0

MT
p Duv Cuv

" #
; bU ¼ Iuv A�1

uv GuvMp

0 �Ip

" #
Here, the Schur complement Cuv is given by
Cuv ¼ �MT
p DuvA

�1
uv GuvMp
Now, we approximate K by bK only. Note that if bK is used as a preconditioner for K in a Krylov sub-
space method, then the convergence is determined by the eigenvalues of the preconditioned matrixbK�1K ¼ bU, which are all simply 1 and their multiplicity is at most 2. Hence the method will converge
in two steps.

We replace the saddle point problem K with the approximation bK in the matrix of system (23). Now we can
perform Gaussian elimination with the diagonal blocks. This will result in the following factorization
Ap 0 0 0 0

Guv Auv 0 0 0

0 MT
p Duv Cuv 0 0

0 eDuv 0 Aw 0

0 Buv 0 Bw SST

26666664

37777775

Ip 0 0 0 A�1
p
eBST

0 Iuv 0 0 �A�1
uv GuvA

�1
p
eBST

0 0 Ip 0 0

0 0 0 Iw A�1
w
eDuvA

�1
uv GuvA

�1
p
eBST

0 0 0 0 IST

266666664

377777775

where
SST ¼ AST þ ðBuv � BwA�1
w
eDuvÞA�1

uv GuvA
�1
p
eBST ð25Þ
Surprisingly except in bK, the matrix Cuv does not occur anywhere in the factorization. This is due to the
zero blocks in the column of Cuv. We do not like to construct Cuv explicitly, because it is probably a full matrix
and expensive to construct. Fortunately we can get rid of bK for the same reason we introduced it. The matrix
K is a good approximation of bK so we put back the original saddle point problem in the matrix. This gives us
the following block-ILU factorization as preconditioner
bU ¼ LUUU ð26Þ

with
LU ¼

Ap 0 0 0 0

Guv Auv GuvMp 0 0

0 MT
p Duv 0 0 0

0 eDuv 0 Aw 0

0 Buv 0 Bw SST

26666664

37777775 ð27Þ
and
UU ¼

Ip 0 0 0 A�1
p
eBST

0 Iuv 0 0 �A�1
uv GuvA

�1
p
eBST

0 0 Ip 0 0

0 0 0 Iw A�1
w
eDuvA

�1
uv GuvA

�1
p
eBST

0 0 0 0 IST

266666664

377777775 ð28Þ
To determine the quality of bU as a preconditioner for ~U (the transformed matrix U, see (23)) we have to
look at the generalized eigenvalue problem eUx ¼ kbUx. For k = 1 we can compute the difference eU � bU:
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eU � LUUU ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 MT
p DuvA

�1
uv GuvA

�1
p
eBST

0 0 0 0 0

0 0 0 0 0

26666664

37777775

This shows that all eigenvalues of the preconditioned matrix are one. Unfortunately LU is not the true lower
triangular factor of eU, hence we cannot give the maximum geometric multiplicity of these eigenvalues. In the
results section, we will see that this multiplicity cannot be very high since we do not find very large numbers of
iterations.

The application of bU as preconditioner requires the solution of two large systems involving LU and UU,
respectively. The last is the most easy to solve. Note that UU is a projection matrix. The inverse is the same
as UU except for a minus-sign in front of the off-diagonal blocks in the last column. In other words
U�1

U ¼ ð2I�UUÞ. There is no need to explicitly construct UU or its subblocks. We only need to apply its
inverse to a vector. For example, A�1

p
eBSTx can be decomposed in a matrix vector product y ¼ eBSTx and a

solve of the system Apz = y for z. This holds for all subblocks in UU. We can even reuse intermediate results,
because the subblocks have a lot in common.

The system with LU is more difficult to solve, but, because the matrix is block lower triangular, we can sub-
sequently solve equations with Ap, the saddle point problem with Auv, Aw and SST. We discuss the solution of
each of these smaller matrix problems in more detail below. We note that in practice the application of L�1

U

means that we solve the different variables in the following order
~up ) uuv þ �up ) uw ) uTS
The application of U�1
U then gives a correction for ~up; uuv; �up and uw based on the computed uTS.

3.3.1. Solving the system for the pressure

In this section, we show how the system with Ap is solved, i.e. that part of the pressure that is perpendicular
to the null space of the gradient. We first split Gw = [G1G2] and MT

p ¼ ½MT
1 MT

2 � in such a way that G1 and M2

are square. Hence, we would like to find the inverse of the matrix
Ap ¼
Gw

MT
p

" #
¼

G1 G2

MT
1 MT

2

� �

with extra conditions GwMp = 0 and MT

p Mp ¼ Ip, i.e.
G1M1 þG2M2 ¼ 0

MT
1 M1 þMT

2 M2 ¼ Ip
We can use these conditions to rewrite the matrix Ap. The first condition implies that G2 ¼ �G1M1M�1
2 and

the second condition that MT
2 ¼ Ip �MT

1 M1

� �
M�1

2 . If we substitute these expressions into the matrix Ap, we
can compute the following factorization, i.e.
Ap ¼
G1 �G1M1M�1

2

MT
1 Ip �MT

1 M1

� �
M�1

2

" #
¼

G1 0

MT
1 Ip

� �
Iw �M1

0 Ip

� �
Iw 0

0 M�1
2

� �
ð29Þ
In our case M2 is a diagonal matrix, so we explicitly have the inverses of the last two factors. The only com-
plication could come from the first factor where we have to solve a system with G1. Fortunately this appears to
be quite easy, because G1 is by definition the square part of the discrete gradient Gw, which is an upper trian-
gular matrix with only one nonzero off-diagonal. The action of the inverse of Ap on a vector can be computed
exactly at low cost.

3.3.2. Solving the saddle point problem
The next system is the saddle point problem
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Auv GuvMp

MT
p Duv 0

" #
uuv

�up

� �
¼

buv

�bp

� �

The system is queer in the sense that we have a full velocity field coupled to a depth-averaged pressure field.
Hence, there are much more velocity nodes than pressure nodes. We can simplify the system by depth-integra-
tion of the velocity field. Let MT

uv be the depth-averaging operator for the velocities such that MT
uvMuv ¼ Iuv.

Then the depth-averaged velocity field is �uuv ¼Muvuuv. Now define
Auv ¼MT
uvAuvMuv

Guv ¼MT
uvGuvMp

Duv ¼MT
p DuvMuv
Depth-integration of the momentum equations for the velocity gives the following saddle point problem
Auv Guv

Duv 0

" #
�uuv

�up

� �
¼

�buv

�bp

" #
ð30Þ
This problem, which is related to a barotropic equation, is different from the original one. The solution for �up

is not the same, but hopefully the approximation is good enough. By depth integration, we at least use infor-
mation that is spread all over the velocity field. One could choose a different operator than MT

uv, for example
one that picks a single horizontal velocity field instead of averaging. Then the approximation becomes worse
and the overall performance of the preconditioner deteriorates.

The depth-averaged saddle point problem can be solved with a Krylov subspace method using a precondi-
tioner. In Benzi et al. [1] one can find an overview of saddle point preconditioner in literature. Most of the
preconditioners do not work well in our application because of the dominant Coriolis force. We propose
the following alternative preconditioner for the matrix in (30)
Auv Guv

Duv �Ip=x

" #

This preconditioner is based on artificial compressibility and application requires the solution of a system with
the grad–div stabilized matrix
AGD
uv ¼ Auv þ xGuvDuv
The spectral properties of this preconditioner and the motivation for its use are discussed in de Niet and Wubs
[7]. Note that the size of the depth averaged saddle point problem is L (the number of cells in the vertical)
times smaller than the original saddle point problem. The time to solve it is only a fraction of the time needed
to solve the much bigger systems with Auv and SST. Therefore, the choice of the preconditioner is not a crucial
factor.

Given �up we can compute uuv from the equation Auvuuv ¼ buv �GuvMp�up. This is again done with a Krylov
subspace method involving a preconditioner for the matrix Auv.

3.3.3. Solving the system for the vertical velocity

The vertical velocity is solved from an equation involving Aw. The equation is easy to solve, because Aw is
lower triangular.

3.3.4. Solving the Schur complement

The most difficult system to solve is the one with the Schur complement matrix SST, that we defined in (25).
Fortunately there is no need to construct this matrix explicitly. In a Krylov subspace method we only need to
be able to apply it to a vector. The matrix vector product SSTx can be decomposed in a number of easier
matrix vector products and a few system solves.

The next question we have to answer is: how do we obtain a good preconditioner for SST. It appears that in
our case an incomplete LU factorization of AST suffices. One can get a better preconditioner by constructing a
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factorization for a better approximation to the Schur-complement. For example one can take in account more
of the terms of (25). In general the construction of such a better approximation will be quite expensive and the
number of nonzeros will increase rapidly, which makes the construction of an incomplete factorization much
more expensive. We tried several approximations, but none of them did beat the relatively cheap incomplete
LU factorization of AST.

3.3.5. Nested iterations

The systems with Auv, AST and the depth averaged saddle point problems are solved with right-precondi-
tioned GMRES using the MRILU preconditioner [2]. On these subsystems MRILU performs very well. It is
able to produce a good incomplete factorization with modest fill-in in short time. In all cases we use clustering
of the two variables u, v and T, S. Because we apply nested iterations, we choose a flexible Krylov method
(FGMRES [27]) for the outer iteration.

3.4. Advantages of the block preconditioner over MRILU

At the end of this section, we want to point at a few advantages of the block-ILU preconditioner compared
to MRILU.

We expect that the block-ILU solver scales almost linearly with the problem size. Most of the operations we
have to perform for the construction and application of the preconditioner, scale linearly with the problem
size. Extraction of submatrices, computation of sparse matrix transposes, matrix vector products and the solu-
tion of systems with lower or upper-triangular matrices can all be computed in OðdÞ time. This linear behavior
with the problem size can only be violated by the computation and application of the MRILU factorization of
the matrices Auv, AST and AGD

uv . Fortunately, these matrices are of convection–diffusion type and MRILU
shows almost grid-independent convergence for that kind of problems [2].

We also expect that less memory is needed for the block-ILU solve than with MRILU applied directly to
(20). MRILU requires much memory because a high amount of fill is needed for an accurate factorization. The
block-ILU preconditioner requires the storage of the subblocks and the MRILU preconditioners for the much
smaller matrices Auv, AST and AGD

uv . Because MRILU is a suitable preconditioner for these matrices, the fill
generated by the MRILU factorization will be rather small. Immediate consequence is that both construction
and storage of the MRILU factors is much cheaper. Overall, we expect a serious decrease of the memory
requirements.

The last advantage we want to mention is that parallelization of block-ILU preconditioner seems straight-
forward. If we have good parallel solvers for the solution of the subsystems involving Auv, AST and AGD

uv , we
will be able to build a good parallel code. Because all these matrices are of convection–diffusion type we expect
that we can find suitable parallel solvers for them.

4. Numerical results

In this section, we apply the implicit ocean model in a pseudo-arclength continuation set-up with the block-
ILU solver to two problems. The first problem is the double-gyre wind-driven circulation in an idealized rel-
atively small basin (Section 4.1) and the second problem is the computation of wind- and buoyancy-driven
single-hemispheric flows in an Atlantic size single-hemispheric basin. The aim of the presentation of the results
is to demonstrate the capabilities of the implicit model and hence the physics of the solutions will not be dis-
cussed in detail.

4.1. The double-gyre problem

As in the studies with quasi-geostrophic (QG) and shallow-water (SW) models, a basin of 10� length and
10� width centered around 45�N is considered. In longitude / and latitude h, the boundaries of the domain are
given by /w = 300�E, /e = 310�E, hs = 40�N and hn = 50�N; the basin has a constant depth D = 2400 m. The
flow is only forced by a steady wind stress and otherwise has a constant temperature and salinity. A so-called
double-gyre wind forcing is prescribed of the form
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s/ð/; hÞ ¼ �s0 cos 2p
h� hs

hn � hs

� �
ð31Þ
where s0 is a typical amplitude.
In the case of no thermal and freshwater forcing, TS = SS = 0, we know from QG and SW models that mul-

tiple western boundary current separation paths may exist due to symmetry breaking of the wind-driven flow.
This has, as far as we know, never been demonstrated in primitive-equation models. Due to spherical coordi-
nates, in the latter equation there is no reflection symmetry with respect to the mid axis of the basin (here
h = 45�) and an imperfect pitchfork bifurcation is expected [8]. An imperfect pitchfork bifurcation is a gener-
alization of a pitchfork bifurcation. If the domain would have had a reflection symmetry then we would have
had a symmetric solution for large AH. If in this case by decreasing AH a nonsymmetric solution shows up then
it must have also a counterpart due to the reflection symmetry. These solutions diverge in a continuous way
from the symmetric solution at the bifurcation point which in a plot visualizes as a pitchfork. In our problem
we have approximately a reflection symmetry, therefore for large AH we also find a solution which is nearly
symmetric (see Fig. 4a). When decreasing AH we may end up in a strongly non-symmetric solution (Fig. 4b). It
is to be expected there also exists a variant which is about the reflection of this non-symmetric solution
(Fig. 4c). In this case there is no argument that they should depart both from the ‘‘symmetric’’ solution, simply
because the latter only exists approximately. So the branch of the ‘‘reflection’’ is not attached to the nearly
symmetric solution for large AH (Fig 3). It is however, attached to another nearly symmetric solution
(Fig. 4d). The plot will now show an imperfect pitchfork.

We fix the vertical resolution at L = 12, such that Hm = 200 m. To test the effects of the horizontal resolu-
tion on the pure wind-driven solutions of the model and the performance of the new block-ILU solver, we
start with a value of AH = 1600 m2 s�1. For this value of AH, a 40 km horizontal resolution (25 gridpoints)
will still resolve the western boundary (Munk) layer, such that the solutions at three resolutions
25 · 25 · 12, 50 · 50 · 12 and 100 · 100 · 12 can be compared. The Munk layer profile has an oscillatory spa-
tial structure in zonal direction [26] and hence one can do with only 1–2 gridpoints over a distance dM. Note
that in the last case the number of unknowns (six per grid cell) is about 0.7 million.
Solution branch of the constant density, wind-driven ocean circulation with control parameter AH for the four different resolutions
ed.
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We increase the wind stress parameter s0 from zero to the value of 0.1 Pa and then decrease AH. Along the
solution branch, the maximum value of the barotropic streamfunction is monitored and the result is plotted in
Fig. 2. For AH = 1600 m2 s�1 and s0 = 0.1 Pa, there is a clear quadratic convergence in the maximum value of
the barotropic streamfunction wB, as shown in the second column of Table 2. The curves in Fig. 2 remain close
to a value of AH � 650 m2 s�1. The curve for the 25 · 25 · 12 grid starts to diverge first, since the resolution is
not sufficient anymore to resolve the Munk boundary layer. The curve for the 20 km horizontal resolution
starts to diverge near AH � 400 m2 s�1 for the same numerical reason. Based on the dependence of the Munk
boundary layer thickness dM = (AH/b0)1/3 (with b0 = 2Xcosh0/r0) on AH, the solutions for the 100 · 100 · 12
grid are expected to be accurate for values of AH down to AH � 250 m2 s�1. This is confirmed with the results
of the 125 · 125 · 12 grid.

For each resolution, about 10–20 branch steps were taken to compute the curves in Fig. 2. To provide an
impression of the performance of the block-ILU solver, we provide in the other entries of Table 2 the average
CPU time (in seconds on a 1 GHz HP-DS25 workstation with 16 GB of memory) of the building of the
matrix, the construction of the block-ILU preconditioner and the FGMRES solution of the linear system
(16). For all these timing results, the parameters in the block-ILU solver are such that the accuracy of FGM-
RES iterate has improved by two decimal digits and that of the saddle point problem by 6. In the first three
cases the number of unknowns increases by a factor 4. This factor is observed in the construction of the
Table 2
Overview of CPU time (in s) needed for the first iteration within the Newton–Raphson process with a step ds = �10.0 in AH starting at
AH = 1600 m2 s�1

Grid wB d Matrix Block-ILU #it FGMRES

25 · 25 · 12 22.53 45,000 0.9 1.8 7 0.8
50 · 50 · 12 23.01 180,000 3.8 9.1 9 5.5
100 · 100 · 12 23.14 720,000 16.3 48.5 11 42.9
125 · 125 · 12 23.15 1,125,000 24.9 84.7 8 48.7

Also the value of the maximum of the barotropic streamfunction wB is shown for the four different resolutions at AH = 1600 m2 s�1. The
quantity d is the number of degrees of freedom and the number of iterations (#it) in the FMGRES iterative process is also shown.

Fig. 3. Bifurcation diagram showing the maximum of the barotropic streamfunction wB (in Sv, 1 Sv = 106 m3 s�1) of the constant density
circulation versus the control parameter AH (in m2 s�1). Solutions at the labeled locations are presented in Fig. 4.
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matrix, it is about a factor 5 and 7 for the construction of the block ILU preconditioner and the solution pro-
cess, respectively. Hence the total CPU time per Newton step increases slightly more than linearly with the
number of degrees of freedom.

In a typical bifurcation diagram, we use the lateral friction coefficient AH as a parameter and a resolution of
100 · 100 · 12 points (Fig. 3). In agreement to what is found in shallow-water models, we here find an imper-
fect pitchfork bifurcation, which leads to the existence of multiple patterns below a value of AH = 320 m2 s�1.
The isolated branch in Fig. 3 was found by the residue continuation algorithm as described in chapter 4 of
Dijkstra [8] and analyzed in Gruais et al. [14]. Note that explicit models will not be able to find the
dashed-dotted branch of solutions since it is unstable.

The barotropic streamfunction of steady solutions at specific labeled locations in Fig. 3 are plotted in Fig. 4.
The solution for large AH on the connected branch is the near anti-symmetric double-gyre flow (Fig. 4a).
When AH decreases along this branch, a so-called jet-down solution appears (Fig. 4b), a solution very well
known from QG and SW models [8]. Along the isolated branch, a jet-up solution exists (Fig. 4c) along the
lower branch and after the saddle-node bifurcation at AH = 320 m2 s�1, the flow becomes more inertially con-
trolled (Fig. 4d). Although these results were expected, it is the first time that such a multiple equilibria struc-
ture is computed for a full primitive-equation model.

4.2. Wind- and thermohaline flows

Similar to the study in Te Raa and Dijkstra [35], we consider a basin of 64� length and 64� width centered
around 40�N. In longitude / and latitude h, the boundaries of the domain are given by /w = 286�E,
/e = 350�E, hs = 10�N and hn = 74�N; the basin has a constant depth D = 4000 m. As forcing we choose
a b

c d

Fig. 4. Patterns of the barotropic streamfunction of labeled locations in Fig. 3. Contour values are in Sv.
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T Sð/; hÞ ¼ T 0 þ g
DT
2

cos p
h� hs

hn � hs

� �
ð32aÞ

SSð/; hÞ ¼ S0 þ g
DS
2

cos p
h� hs

hn � hs

� �
ð32bÞ
where we have introduced another homotopy parameter g such that g = 0 represents no forcing and g = 1 is a
realistic strength of the forcing. Furthermore, we use interpolated values of the annual mean wind stress data-
set of Trenberth et al. [37] and multiply the amplitude of this forcing by g. In this way, we can vary g and
increase all three forcing functions simultaneously.

4.2.1. Constant mixing coefficients
We first take a constant vertical mixing coefficient, i.e. gV = 0 in (11) with K0

V ¼ 10�4 m2 s�1 and
Kc

V ¼ 102 m2 s�1. In addition, we use values AH = 2.5 · 105 m2 s�1, KH = 1.0 · 103 m2 s�1, DT = 20 �C and
DS = 1.0 psu. These are values quite similar to those used in ocean-climate models of similar resolution. Fur-
thermore, we do not yet consider neutral mixing (gM = 0) and GM-mixing (gG = 0). The vertical resolution is
chosen as L = 16 such that Hm = 250 m. Maximum values of the meridional overturning streamfunction (wM)
are plotted versus g in Fig. 5 for three different resolutions; the highest resolution corresponds to a horizontal
resolution of 1�. Beyond g = 0.3, the three curves start to deviate from each other and a smaller value of the
meridional overturning occurs for the higher resolution model at larger values of g.
Solution branch, showing the maximum of the meridional overturning streamfunction wM (in Sv) of the thermohaline and wind-
ocean circulation versus the control parameter g for the three different resolutions indicated.

3
ew of CPU time (in s) needed for the first iteration in the Newton–Raphson process for a step Ds = 0.01 in g starting at g = 1

tion wM d Matrix Block-ILU/MRILU #it FGMRES/GMRES

· 16 12.12 24,576 2.0 9.1/260.6 37 44.2/81.1
· 16 11.64 98,304 8.6 70.6 60 330.2
· 16 11.36 393,216 36.9 557.2 35 882.9

rmat is the same as in Table 2. For the lowest resolution, also timing results for the original MRILU solver are provided. The
um of the meridional overturning streamfunction wM for three different resolutions and g = 1 is also presented. No restart is used
GMRES.
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The maximum of meridional overturning streamfunction (wM) converges with the horizontal resolution as
can be seen from the second entry of Table 3. From each solution at g = 1, one step with Ds = 0.01 was per-
formed in g and the CPU time required for the first iteration in the Newton–Raphson process is shown in
Table 3. It is clear that computations involving these thermohaline and wind-driven flows are more expensive
than those for only wind-driven flows, since the flow is simply more complex with salt and temperature vari-
ations over the computational domain. In column 4 one observes that the time for constructing the matrix is
a

c

e f

d

b

Fig. 6. Patterns of the barotropic streamfunction (a, c, e) and meridional overturning streamfunction (b, d, f) at g = 1. (a and b)
16 · 16 · 16, (c and d) 32 · 32 · 16 and (e and f) 64 · 64 · 16.
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linear in the number of unknowns as may be expected. However, this is not the case for the construction of the
preconditioner. A similar behavior is shown in Dijkstra et al. [10] for MRILU applied to the whole system at
once, and will also occur if a direct method with fill-reducing order is used. However, the coefficient of this
behavior is in the new solver more than an order of magnitude less than that in the original MRILU approach.
The behavior results from the construction of the MRILU preconditioner for AST, and is due to the dropping
parameters used. These are currently not optimized. We see that the number of iterations in the 6th column
has an outlier, which also makes the solution phase relatively expensive here. Correcting for this number of
iterations, we observe a solution time which increases almost linear with the number of unknowns. In any case
we see that the geometric multiplicity of the eigenvalues of the preconditioned matrix (see the discussion in
Section 3.3) cannot be very high since the number of iterations is still relatively small.

For the lowest resolution, a comparison with the old MRILU method is provided in the 5th and 7th col-
umn of Table 3. The new solver is a significant improvement over the old approach, in particular the construc-
tion of the preconditioner is more than a magnitude faster needing also less computing time for the solution
phase. Not shown is that also the use of memory is substantially less. With the original approach we run much
earlier out of core than the new approach if the number of freedoms is increased. This allows us to run prob-
lems with higher resolution needed to catch important physical phenomena.
a

b

Fig. 7. (a) Dependence of wM on gM for g = 1 for two values of the slope limiter tanam. (b) Pattern of the meridional overturning
streamfunction for gM = 1, g = 1, tanam = 0.02; contours in Sv.
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Patterns of the meridional overturning streamfunction wM and the barotropic streamfunction wB are plot-
ted in Fig. 6 at g = 1 for each of the three resolutions. Each solution is completely stably stratified and sinking
occurs north of 60�N. In principle, the solutions for the coarsest grid are already sufficiently accurate for this
value of K0

V and AH and they are just smoothed at higher resolution. This justifies the resolution used in many
of the earlier results on single-hemispheric flows [35].

4.2.2. Spatially variable mixing

So far, only results for a constant mixing coefficients KV were presented i.e. gV = 0 in (11) and no neutral
and GM-mixing was applied (gM = gG = 0). We first consider the effect of neutral mixing on the solutions on a
16 · 16 · 16 grid for g = 1 (i.e. Fig. 6a and b). For two values of the slope limiter tanam = 0.01 and 0.02, we
increase gM from zero to one, while keeping gG = 0 and j = KH. The presence of neutral mixing leads to a
slight increase in the strength of the meridional overturning circulation (Fig. 7a). Allowing larger slopes
removes spurious diapycnal mixing over a larger area and hence the increase in meridional overturning is lar-
ger. In the solution for gM = g = 1 in Fig. 7b, the small equatorial cell has more or less disappeared indicating
that it is due to spurious diapycnal mixing.

From the solution in Fig. 7, we increase gG to include GM-mixing and see that for both slope limiters, the
strength of the MOC further increases (Fig. 8a). Although the Newton–Raphson method has no trouble
a

b

Fig. 8. (a) Dependence of wM on gG for g = 1 for two values of the slope limiter tanam. (b) Pattern of the meridional overturning
streamfunction for gG = 0.5, g = 1, tanam = 0.02; contours in Sv. The solution for tanam = 0.01, g = 1.0 is very similar.
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converging, small local differences in mixing create the small wiggles in the curves in Fig. 8a. The solution for
gG = 0.5 (Fig. 8b) is hardly distinguishable from that of gG = 0 (Fig. 7b). We checked the results of our model
with respect with neutral and GM mixing by comparing them, for only temperature forcing, to steady solu-
tions obtained with version 3.1 of the GFDL Modular Ocean Model.

We next consider a spatially variable KV while choosing gM = gG = 0. Using a 16 · 16 · 16 resolution, we
first change the value of K0

V to 2.0 · 10�5 m2 s�1 which is a more realistic value of the background vertical mix-
ing coefficient. Again with the same forcing functions of wind, temperature and salinity, we increase g from
g = 0 to 1 under a constant K0

V. The maximum value of the meridional overturning streamfunction is plotted
versus g in Fig. 9a. The maximum meridional overturning increases up to about 6.8 Sv which is much smaller
than the earlier value of 12.12 Sv (found for K0

V ¼ 2:0� 10�5 m2 s�1). The pattern of the MOC at g = 1 for this
case is shown in Fig. 9b and displays a large subsurface near-equatorial cell indicating a larger effect of spu-
rious diapycnal mixing on the solution.

We next choose the field e in (11) as
Fig. 9.
eð/; h; zÞ ¼ �ze0

D

h i
cos

p
2

h� hs

hn � hs

þ 0:2

� �
ð33Þ
with e0 = 10�9 m2 s�3. This representation mimics the larger available energy for mixing at the bottom of the
domain, thought as being caused by the interaction of tides and topography [39]. We next continue gV from
gV = 0 to 1 to allow for mixing as determined from the background stratification according (11) and the en-
a

b

(a) Dependence of wM on g for gV = 0. (b) Pattern of the meridional overturning streamfunction for gV = 0, g = 1; contours in Sv.
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Fig. 10. (a) Dependence of wM on gV for g = 1. (b) Patterns of the meridional overturning streamfunction for gV = 1, g = 1; contours
in Sv.
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ergy field e as in (33). The dependence of the maximum of wM on gV is plotted in Fig. 10a and shows an in-
crease in overturning with gV of about 1.5 Sv. Because of the larger mixing at the bottom of the domain, the
overturning increases at depth as can be seen in Fig. 10b. This has also an effect on the equatorial cell, which
increases in strength. We next vary e0 from the solution in Fig. 10a for gV = 1, g = 1. The dependence of the
strength of the meridional overturning on e0 is plotted in Fig. 11a. As expected, the overturning strength in-
creases with increasing e0 as more energy is available for mixing.

5. Summary and discussion

Techniques from numerical bifurcation theory have demonstrated their usefulness to provide more
insight into the physics of transition behavior in ocean models [8]. So far, they have been applied to ocean
models with a relatively small number of degrees of freedom (up to Oð105Þ), such as 1.5-layer shallow-water
models, 2-layer quasi-geostrophic models and low-resolution three-dimensional primitive equation models
[35,38].

Major weaknesses in previous models was the representation of horizontal and vertical mixing processes
and the application of convective adjustment. In the model formulation used here, this has been overcome
by evaluating the Jacobian matrix in part numerically. This enables to include more realistic representations



a

b

Fig. 11. (a) Dependence of wM on e0/e0c, with e0c = 10�9 m2 s�3 for g = 1 and gV = 1. (b) Patterns of the meridional overturning
streamfunction for e0/e0c = 2.5, gV = 1, g = 1; contours in Sv.
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of oceanic mixing processes. We have shown the capabilities of this approach by considering energy consistent
vertical mixing in combination with convective adjustment. The solvers are seen to handle these cases effi-
ciently. The tailored linear system solver presented in this paper is therefore a major step forward to apply
bifurcation analysis to ocean models with up to Oð106Þ degrees of freedom. An alternative approach would
be the one chosen in Nadiga et al. [21], but this has so far not been applied for bifurcation studies.

The solver here is based on the fact that splitting the pressure in an average pressure and a part perpendic-
ular to it leads to a system with more zeros in it which can be put almost in lower triangular block form. In
fact, a lower triangular system would occur if the fluid is barotropic, hence if the pressure does not depend on
salinity and temperature. However, in the ocean model it does and it is critical. Therefore, instead of approx-
imating by a lower triangular matrix, we approximate the matrix by a block-ILU factorization, which is used
as a preconditioner. The solver applies this preconditioner within FGMRES, a variant of GMRES that allows
for iterative subprocesses, as iterative method. This is needed because the application of the block-ILU pre-
conditioner requires the solution of a number of subsystems, some of which can be solved exactly but others
are solved by GMRES using the MRILU preconditioner. With the block-ILU preconditioner, the FGMRES
(the outer iterative method) converges very fast to an accurate solution.

Compared to the previous solver used (MRILU with GMRES [38]), the block-ILU approach has the
advantage that the construction of the preconditioner is an order of magnitude faster, storage of the precon-
ditioner requires less memory and consequently the application of the preconditioner is much cheaper. The
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construction time for the preconditioner for the thermohaline flow increases like Oðd3=2Þ and for the solution
almost like OðdÞ. The latter is very well acceptable. We think we can also improve on the former, which is a
subject of further study. The critical systems to be solved are of convection–diffusion type. This also eases the
path to parallelization since many advanced parallel methods exist for that in the literature.

The parallelization is the next step in our model development, which should allow us to run problems with
107 degrees of freedom. For the parallelization we will use domain decomposition; each domain is assigned to
a processor which computes the right-hand side function, the Jacobian matrix and the matrices needed for the
incomplete block factorization for its own domain. This will be implemented in Trilinos, which has a variety of
parallel solvers available for the solution of the subsystems.

Two typical flow examples were used to demonstrate the performance of the new solver. We were able to
compute the bifurcation structure of the isothermal wind-driven double-gyre flow using a 10 km resolution
involving the analysis of a system of 720,000 degrees of freedom. This is the first time that an imperfect pitch-
fork bifurcation is computed in a primitive-equation ocean model. Encouraging result is here that the compu-
tational cost increases approximately linearly with the number of degrees of freedom. Furthermore, we were
able to compute steady wind- and buoyancy-driven flows in a single-hemispheric Atlantic size basin with up to
1� horizontal resolution and represent horizontal and vertical mixing processes in a state-of-the-art way. The
latter result opens the way to study the interaction of the thermohaline and wind-driven ocean circulation in
more detail using tools of dynamical systems theory.
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[10] H.A. Dijkstra, H. Öksüzŏglu, F.W. Wubs, E.F.F. Botta, A fully implicit model of the three-dimensional thermohaline ocean

circulation, J. Comput. Phys. 173 (2001) 685–715.
[11] H.A. Dijkstra, L.A. Te Raa, M. Schmeits, J. Gerrits, On the physics of the Atlantic Multidecadal Oscillation, Ocean Dynam. 56

(2006) 36–50.
[12] P.R. Gent, J. Willebrand, T.J. McDougall, J.C. McWilliams, Parameterizing eddy-induced tracer transports in ocean circulation

models, J. Phys. Oceanogr. 25 (1995) 463–474.
[13] S.M. Griffies, Fundamentals of Ocean-Climate Models, Princeton University Press, Princeton, USA, 2004.
[14] I. Gruais, N. Rittemard, H.A. Dijkstra, A priori estimations of a global homotopy residue continuation method, Nonlinear Funct.

Anal. Optim. 4–5 (2005) 507–521.
[15] R.X. Huang, Mixing and energetics of the oceanic thermohaline circulation, J. Phys. Oceanogr. 29 (1999) 727–746.
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